pAd1130-01

Shuttle plasmid for constructing adenovirus vectors with the E4 region under the control of a heterologous promoter

  • Promoter of interest is inserted between E4 TATA box and right ITR
  • Oncolytic adenoviruses (CrAds)
  • Manipulation of E4 region
  • AdenoQuick2.0 cloning system
$250.00
Cat# :
QP-14
Size: 
20 µg

pAd1130-01 is a plasmid designed for constructing recombinant adenovirus vectors, in combination with the AdenoQuick2.0 plasmids (pAd1127, pAd1128, pAd1129, and their derivatives). It is derived from pAd1130, in which the E4 promoter (psn 35645-35832 in the Ad5 genome) is deleted and replaced with a multiple cloning site.  The E4 TATA box is still present. The plasmid can be used to construct oncolytic adenoviruses containing heterologous promoter (w/o their own TATA box) driving the expression of the E4 genes.  It can also be used to construct helper viruses with E4 region modifications. The right ITR is flanked with PacI and SwaI sites.  The E4 region is terminated with two SfiI sites, which generate non-symmetrical sticky ends suitable for directional cloning. The plasmid contains a 5 kb stuffer made from scrambled phage λ DNA.  This stuffer increases the size of the ligation product of pAd1127, pAd1128, pAd1129, and pAd1130 so that it can be packaged efficiently into phage λ.

ProductCat#SizePrice

pAd1130 Updated

Shuttle vector for the construction of adenovirus vectors using the AdenoQuick2.0 system (WT E4 region)
Cat# :
QP-13
20 µg
$250.00
More Info »

pAd1130-02

Shuttle plasmid for constructing adenovirus vectors with the E4 region under the control of a heterologous promoter with its own TATA box
Cat# :
QP-15
20 µg
$250.00
More Info »

pAd1130-03 Updated

Shuttle plasmid for constructing adenovirus vectors with a 2.8 kb deletion in the E4 region
Cat# :
QP-16
20 µg
$250.00
More Info »

pAd1130-04

Shuttle plasmid for constructing adenovirus vectors with a 1.2 kb deletion in the E4 region
Cat# :
QP-19
20 µg
$250.00
More Info »

  • What is a cosmid?

    A cosmid is a large plasmid that was generated by infecting E. coli with bacteriophage lambda.  Cosmids are really great tools to construct recombinant adenoviruses because their minimum sizes (~39 kb) accommodates the 36 kb adenovirus genomes almost perfectly.  When you construct a recombinant adenovirus genome in E. coli using cosmid technology, you are almost sure that every colony carries a full-size genome, and not a smaller plasmid that lost chuncks of the adenovirus genome by DNA recombination.

  • How difficult is it to construct a cosmid?

    Constructing a cosmid is not more difficult, more time-consuming nor more expensive than constructing a plasmid.

    Here are the steps:

    1. Ligate your DNA fragments (2-3 hours at R.T. or overnight at 16 ºC)
    2. Package of the ligation products into lambda phage heads: simply add 2 uL ligation reaction to 6 uL packaging extract (provided in the kit) and incubate at 30 ºC for 90 min.
    3. Infect E. coli with the packaged lambda heads: 30 min at 37 ºC.
    4. Streak on petri dish supplemented with LB + antibiotics - incubate overnight at 37 ºC.
    5. Grow colonies in 2 mL LB/antibiotics (< 12 hrs at 37 ºC)
    6. Purify the cosmid DNA (alkaline lysis method) and analyze by restriction digestion.
  • Which enzyme should I use to linearize my cosmid before transfecting it into helper cells? PacI or SwaI?

    Both PacI and SwaI are rare-cutting restriction enzymes that recognize 8 bp-sequences.  Both of them are flanking both ends of the recombinant adenovirus genome contained in your cosmid.  You should make sure that the enzyme that you will use to linearize your cosmid does not cut inside your transgene.  If neither PacI nor SwaI cuts inside your transgene, there is really no preference.  Because the PacI site is immediately flanking the start of the adenovirus genome, the DNA ends generated by PacI resemble the most the ends obtained from deproteinised virion DNA and might therefore be more efficient in promoting virus replication. In practice however, no difference in the time needed to recover the virus after DNA transfection into 293 cells is observed between both settings. Virus plaques can appear as early as 4 days after transfecting PacI- or SwaI-digested DNA into 293 cells.

  • What will happen if I do not digest the cosmid DNA with PacI or SwaI prior to the transfection?

    You will most likely not get any virus plaque.  Linearizing the cosmid is important to release the ITRs that serves as origin of replication for the adenovirus DNA polymerase.

  • How do I choose the status of the E3 region: wild-type or deleted?

    In the adenovirus replication cycle, the expression of the E3 region helps the virus evading the host immune system. This region is not essential for virus replication in vitro and therefore can be deleted in order to construct adenoviruses containing longer transgenes, up to 7.7 kb.

    Therefore, if you are using the most common 3.2 kb E1 deletion, and:

    • if your expression cassette (= promoter + coding sequence + polyA signal) is smaller than 5.0 kb, you can use adenovirus vectors with either wild-type or deleted E3 region. 
    • if your expression cassette is larger than 5.0 kb but smaller than 7.7 kb, you must use E1/E3 deleted vectors.
    • if your expression cassette is larger than 7.7 kb, you must consider E1/E3/E4-deleted adenovirus vectors.

    Notes:

    1. In some applications such as oncolytic adenovirus vectors (CRAds), it might be desirable to retain the entire E3 region,  or increase the expression of some E3 products: for instance, the adenovirus “death protein” E3-11.6K, which facilitates the release of viral particles from infected cells, or gp19K, whose constitutive expression reduces the host cytotoxic T cell response against the vector and increases the persistence of transgene expression on its own but possibly not in the context of constitutive expression of the entire E3 region.
    2. The E3 region can also be used as a location to insert a second transgene, independent from the one inserted in the E1 region.
  • Can I use the AdenoQuick2.0 system if my expression cassette contains a SfiI restriction site?

    Yes, you can!  When you digest your shuttle plasmid with SfiI, you will have to purify two SfiI fragments (instead of one).  As a result, the ligation reaction that you will set up to construct your cosmid will contain 5 DNA fragments (instead of 4).  The cloning efficiency will maybe decrease, but it will work, we have done it.  You might have to verify the integrity of your cosmid with additional restriction digestions, or even sequencing, especially if the additional SfiI site is located inside the coding sequence of your transgene.

  • Can I use the AdenoQuick2.0 system to construct oncolytic adenovirus vectors?

    Our AdenoQuick2.0 system is very versatile.  It allows for mutating practically every region of the Ad5 genome as long as the virus is viable and it is acceptable from safety and bioethics points of view.  For instance you can mutate easily the E1a and E1b genes (e.g. ∆E1ACR2, ∆E1B19k), delete specific E3 genes (e.g. E3b gp19K) and replace them with transgenes so they become activated when the virus replicates, retarget the fiber to specific receptors, mutate the E4 ORFs, etc...

  • The Cosmid Construction Kits are shipped on dry ice. Does it affect the SfiI enzyme it contains?

    Not at all.  The Cosmid Construction Kits -1 and -2 are shipped on dry ice because of the lambda packaging extract.  The SfiI enzyme that is included in the kit will be frozen. We have verified experimentally that a single freeze/thaw cycle will not affect SfiI activity.  However, avoid repeated freeze/thaw.  Once you receive the enzyme, store it at -20 ºC.

  • How do I calculate the maximum cargo capacity of an adenovirus vector?

    You simply sum up the sizes of the deletions present in your vector and add 1.8 kb. For instance, let us suppose that you are considering using an Ad5 backbone characterized by a 3.2 kb E1 deletion (psn 354-3510) and a 2.7 kb BglII E3 deletion (psn 28133-30818).  Your vector will be able to package 3157 bp (= 3510 - 353)   + 2686 bp (= 30818 - 28132) + 1800 bp = 7.6 kb.

    The additional 1.8 kb is the extra DNA that Ad5 capsids can package in addition to their 35,935 bp-long genome (Bett et al, J. Virol. 1993; 67: 5911-21).

  • What is the maximum cargo capacity for the AdenoQuick and AdenoZAP system?

    For the AdenoQuick1.0 system, the current maximum cargo capacity is achieved with E1/E3/E4-deleted pAd362.  The vector allows for inserting 8.9 kb foreign DNA into the E1 region.

    For the AdenoQuick2.0 system, adenovirus vectors can be constructed, in which up to 11.2 kb foreign DNA can be inserted.  It is done by combining the largest E1 deletion (3157 bp in shuttle plasmid pAd1127-02) with the largest E3 deletion and the hybrid Ad5/35 fiber ( 2686 bp + 756 bp in pAd1129-06), and the largest E4 deletion (2815 bp in shuttle plasmid pAd1130-03), plus the extra 1.8 kb that adenovirus capsids can accomodate in addition to the WT 36 kb genome (Bett et al, 1993. J. Virol. 67: 5911-21).

    For the AdenoZAP system, the current maximum cargo capacity of 9.6 kb is obtained with AdenoZAP1.4.

  • Which facilities are required to work with adenovirus vectors?

    The National Institute of Health has designated adenovirus as Level 2 biological agent.  For most applications, working with adenovirus requires therefore a Biosafety Level 2 (BL2) facility.  The NIH guidelines for research involving recombinant DNA molecules stipulate also that experiments which are likely to either enhance the pathogenicity (e.g. insertion of a host oncogene) or to extend the host range (e.g. introduction of novel control elements) of viral vectors under conditions that permit a productive infection should be performed in BL3 facilities.

    A BL2 laboratory should contain:

    • A warning sign on the entrance door limiting the access to authorized persons only.  The sign should identify the agent, list the name and phone number of the lab director or other responsible person, and indicate any special requirement for entering the lab.
    • A Class II biological safety cabinet.  A Class II cabinet is a ventilated cabinet for personnel and product protection having an open front with inward airflow for personnel protection, and a HEPA filtered mass recirculated air flow for product protection.  The face velocity of the inward flow of air through the full-width open front is 75 feet per minute or greater.  
    • At least one tissue culture incubator dedicated to infected cell cultures.  Another separate incubator is desirable for growing uninfected cells.
    • The minimal equipment to handle adenovirus culture without exiting the BL2 lab (such as centrifuges, microscope…).
    • A sink for hand washing
    • A chemical disinfectant kit or at least a gallon of bleach available for spills

    For more information about guidelines, visit this NIH web page.

  • Which precautions should I take while working with adenovirus?

    Work with adenovirus must be performed in a BL2 lab.  There you must:

    • Always wear a lab coat while in the virus lab.  Before exiting the laboratory for non-laboratory areas (e.g. cafeteria, library, administrative offices…), remove your lab coat and leave it in the laboratory.
    • Avoid skin contamination with the virus.  Always wear gloves (one pair OK, two pairs better for added protection).  Once your gloves have been in contact with infectious material, do not touch common appliances such as telephone or doors handles.  Change your gloves frequently.
    • Keep the lab doors closed while work is in progress.
    • Use mechanical pipetting devices.  Do not pipet by mouth.
    • Decontaminate all work surfaces after you finish your work, and immediately after any spill.  Spray a 10% bleach solution, wipe and spray again a 70% ethanol solution.  For large liquid spills, add directly concentrated bleach to the liquid, leave for at least 5 minutes, and wipe.
    • Perform all procedures with infectious particles in the biosafety cabinet to minimize the exposure of personnel to aerosols.  Minimize the creation of aerosols by pipetting virus cultures and suspension very gently.  Use aerosol-resistant tips for pipetting virus suspensions.  Do not conduct work with infectious materials in open vessels on the open bench. 
    • Use needle-locking syringes or disposable syringe-needle units for the injection or aspiration of infectious fluids.  Extreme care should be used to avoid auto-inoculation and aerosol generation.  Needles should not be bent, sheared, replaced in their sheath or guard or removed from the syringe following use.  The needle and syringe should be decontaminated by pipetting in and out concentrated bleach a few times and then promptly placed in a puncture-resistant container.
    • Decontaminate all contaminated liquid or solid wastes before disposal.  Before starting your virus work, pour some bleach into a beaker.  Rinse all materials (tissue culture dishes, pipets, tips…) that came into contact with adenovirus with 10% bleach inside the hood before discarding them in the Biohazard trash and autoclaving. Place all materials to be decontaminated off-site in a durable leakproof container which is closed before removal. If possible, leave the contaminated materials in contact with bleach for a few hours before autoclaving (e.g. after rinsing your pipets with concentrated bleach inside the hood, soak them in a cylinder containing 10% bleach before autoclaving).
    • Do not leave the BL2 laboratory with live viruses, unless they are in a sealed tube.  Cell cultures transduced with adenoviruses should be inactivated either chemically or biochemically before leaving the BL2 facility.
    • Store your adenovirus preparations at –70 °C in closed containers labeled with Biohazard warning signs.
    • Wash your hands when exiting the laboratory.

Vector MapPolylinkerSequenceSequence + AnnotationsProduct Information Sheet
Vector Map pAd1130-01_MCS.png (363.67 KB) pAd1130-01.txt (9.98 KB) pAd1130-01.gb (19.35 KB) Product Information pAd1130-01.pdf (143.15 KB)